English
  • إرجاع مجاني بسهولة
  • أفضل عروض

Statistical And Machine Learning Approaches For Network Analysis Hardcover English by Matthias Dehmer - 7-Sep-12

قبل:
740.00 جنيه
الآن:
644.00 جنيه يشمل ضريبة القيمة المضافة
وفّرت:
96.00 جنيهخصم 12٪
باقي 4 وحدات في المخزون
noon-marketplace
احصل عليه خلال 22 يناير
اطلب في غضون 19 ساعة 0 دقيقة
إدفع 6 اقساط شهرية بقيمة ١٣٠٫٠٠ جنيه.
emi
خطط الدفع الشهرية تبدأ من جنيه18عرض المزيد من التفاصيل
/cib-noon-credit-card
التوصيل 
بواسطة نوون
التوصيل بواسطة نوون
البائع ذو
 تقييم عالي
البائع ذو تقييم عالي
الدفع 
عند الاستلام
الدفع عند الاستلام
عملية 
تحويل آمنة
عملية تحويل آمنة
1
1 في عربة التسوق
أضف للعربة
Noon Locker
توصيل مجاني لنقطة نون ومراكز الاستلام
معرفة المزيد
free_returns
تقدر ترجّع المنتج بسهولة في العرض ده
(Original Copy - نسخه أصلية)
المنتج كما في الوصف
المنتج كما في الوصف
90%
شريك لنون منذ

شريك لنون منذ

5+ سنة
أحدث التقييمات الإيجابية
أحدث التقييمات الإيجابية
نظرة عامة
المواصفات
الناشرJohn Wiley And Sons Ltd
اللغةالإنجليزية
وصف الكتابExplore the multidisciplinary nature of complex networks through machine learning techniques Statistical and Machine Learning Approaches for Network Analysis provides an accessible framework for structurally analyzing graphs by bringing together known and novel approaches on graph classes and graph measures for classification. By providing different approaches based on experimental data, the book uniquely sets itself apart from the current literature by exploring the application of machine learning techniques to various types of complex networks. Comprised of chapters written by internationally renowned researchers in the field of interdisciplinary network theory, the book presents current and classical methods to analyze networks statistically. Methods from machine learning, data mining, and information theory are strongly emphasized throughout. Real data sets are used to showcase the discussed methods and topics, which include: * A survey of computational approaches to reconstruct and partition biological networks * An introduction to complex networks measures, statistical properties, and models * Modeling for evolving biological networks * The structure of an evolving random bipartite graph * Density-based enumeration in structured data * Hyponym extraction employing a weighted graph kernel Statistical and Machine Learning Approaches for Network Analysis is an excellent supplemental text for graduate-level, cross-disciplinary courses in applied discrete mathematics, bioinformatics, pattern recognition, and computer science. The book is also a valuable reference for researchers and practitioners in the fields of applied discrete mathematics, machine learning, data mining, and biostatistics.
عن المؤلفMATTHIAS DEHMER, PhD, is Head of the Institute for Bioinformatics and Trans- lational Research at the University for Health Sciences, Medical Informatics and Technology (Austria). He has written over 130 publications in his research areas, which include bioinformatics, systems biology, and applied discrete mathematics. Dr. Dehmer is also the coeditor of Applied Statistics for Network Biology, Statistical Modelling of Molecular Descriptors in QSAR/QSPR, Medical Biostatistics for Complex Diseases, Analysis of Complex Networks, and Analysis of Microarray Data, all published by Wiley. SUBHASH C. BASAK, PhD, is Senior Research Associate at the Natural Resources Research Institute. He has published extensively in the areas of biochemical pharmacology, toxicology, mathematical chemistry, and computational chemistry.
تاريخ النشر7-Sep-12
عدد الصفحات344

Statistical And Machine Learning Approaches For Network Analysis Hardcover English by Matthias Dehmer - 7-Sep-12

في عربة التسوق atc
مجموع العربة 644.00 جنيه
Loading