Publisher | Springer-Verlag Berlin and Heidelberg GmbH & Co. |
ISBN 10 | 3540070281 |
Book Format | Paperback |
Book Subtitle | Cours Au College D |
Publication Date | March 15,2002 |
ISBN 13 | 9783540070283 |
Author | Jean-Pierre Serre |
Language | French |
Book Description | Chapter I. PILEMENIC IDEALS IT LOCALIZATION I I. Wotationa and Definitions I. Lemma of Bakay. . . . 2 3. Location - - - 4. Noethrian rings and 80dules 2 5. Spectrum ------ 3 4 6. The Noetherian case. 4 7. Ideas pre. associates. Chapter 11. SAFE IT TOOLS A) Filtrations and graduations. 8 I. Rings and filter modules - 8 2. Topology defined by UFiltration 9 10 3. Coapletion of filter modules - - - II 4. Rings and gradual modules - - - - - 5. everything becomes Noethirian again; -adic filtrations. 6. Filters Differential Modules ------------ B) Hilbert-SamueL Polynoa ----------- 26 I. Reminder on polynomials Ii integer values --- - 26 27 2. Additive functions on the categories of modules. 29 3. Hilbert's characteristic polynomial 32 4. The invariants of Hilbert-Samuel Chapter 111. T1I ORLE OF THE DDLE! ISION A) Dimension of the extensions. WHOLE. I. Definitions. - - - - - - - - - - - - 38 2. The first theore- of Cohen-Seidenberg. 39 3. Cohen-Seidenberg's second theorem - 4I B) Dimension in Noetherian rings. 43 I. Dimension of a module. - - - 43 2. The Noetherian semi-local case 44 3. Syste. Parameters 47 C) Normal rings 48 I. Characterization of normal rings. 48 2. Properties of the normal rings 51 3. Integral closure. 53 D) Polynomial rings. - - - - - 54 I. Parameters 47 C) Normal rings 48 I. Characterization of normal rings. 48 2. Properties of the normal rings 51 3. Integral closure. 53 D) Polynomial rings. - - - - - 54 I. Parameters 47 C) Normal rings 48 I. Characterization of normal rings. 48 2. Properties of the normal rings 51 3. Integral closure. 53 D) Polynomial rings. - - - - - 54 I |
Number of Pages | 176 |