العربية
  • Free & Easy Returns
  • Best Deals
العربية
loader
Wishlist
wishlist
Cart
cart

Probabilistic Forecasting And Bayesian Data Assimilation paperback english - 14-May-15

Now:
EGP 744.45 Inclusive of VAT
Only 1 left in stock
noon-marketplace
Get it by 28 Dec
Order in 21 h 12 m
emi
Monthly payment plans from EGP 21View more details
Pay 6 monthly payments of EGP 150.00.
/cib-noon-credit-card
Delivery 
by noon
Delivery by noon
Cash on 
Delivery
Cash on Delivery
Secure
Transaction
Secure Transaction
1
1 Added to cart
Add To Cart
Noon Locker
Free delivery on Lockers & Pickup Points
Learn more
free_returns
Enjoy hassle free returns with this offer.
(Original Copy - نسخه أصلية)
Item as Described
Item as Described
80%
Partner Since

Partner Since

5+ Years
Great Recent Rating
Great Recent Rating
Overview
Specifications
PublisherCambridge University Press
ISBN 139781107663916
ISBN 101107663911
Book DescriptionIn this book the authors describe the principles and methods behind probabilistic forecasting and Bayesian data assimilation. Instead of focusing on particular application areas, the authors adopt a general dynamical systems approach, with a profusion of low-dimensional, discrete-time numerical examples designed to build intuition about the subject. Part I explains the mathematical framework of ensemble-based probabilistic forecasting and uncertainty quantification. Part II is devoted to Bayesian filtering algorithms, from classical data assimilation algorithms such as the Kalman filter, variational techniques, and sequential Monte Carlo methods, through to more recent developments such as the ensemble Kalman filter and ensemble transform filters. The McKean approach to sequential filtering in combination with coupling of measures serves as a unifying mathematical framework throughout Part II. Assuming only some basic familiarity with probability, this book is an ideal introduction for graduate students in applied mathematics, computer science, engineering, geoscience and other emerging application areas.
About the AuthorSebastian Reich is Professor of Numerical Analysis at the University of Potsdam (full time) and the University of Reading (part time). He also holds an honorary visiting professorship at Imperial College London. Reich is the author of over 100 journal articles and the co-author of Simulating Hamiltonian Dynamics (Cambridge, 2005), which has received more than 600 citations. His research areas cover numerical analysis and scientific computing with applications to classical mechanics, molecular dynamics, geophysical fluid dynamics, and data assimilation. In 2003 he received the Germund Dahlquist Prize from the Society for Industrial and Applied Mathematics (SIAM) for his work on geometric integration methods. Colin Cotter has been a Senior Lecturer in the Department of Mathematics at Imperial College London since 2013. He has published more than 40 journal articles and three book chapters, on the design, analysis and implementation of numerical methods for numerical weather prediction, ocean forecasting and climate modelling; data assimilation; image registration; geometric mechanics and other topics in scientific computing and numerical analysis. His publications have been cited approximately 500 times. He is a key member of the Met Office/STFC/NERC-funded multi-institutional 'Gung-Ho' project which will design a next generation dynamical core for the UK weather prediction and climate forecasting system. He is also a co-investigator for the EPSRC Mathematics of Planet Earth Centre for Doctoral Training, and for the EPSRC Platform for Research in Simulation Methods (PRISM).
LanguageEnglish
AuthorSebastian Reich
Publication Date14-May-15
Number of Pages308

Probabilistic Forecasting And Bayesian Data Assimilation paperback english - 14-May-15

Added to cartatc
Cart Total EGP 744.45
Loading