• usp_easy_retunsFree & Easy Returns
  • usp_best_dealsBest Deals

Sampling : Design And Analysis Paperback English by Sharon Lohr - 14 Jan 2010

EGP560.60
Inclusive of VAT
noon-marketplace
Get it by 2 April
Order in 11 h 38 m
Valu logo
Pay 6 monthly payments of EGP 110.00.
placeholder
/nbe-emi
Delivery 
by noon
Delivery by noon
High Rated
Seller
High Rated Seller
Cash on 
Delivery
Cash on Delivery
Secure
Transaction
Secure Transaction
Product Overview
Specifications
PublisherCengage Learning, Inc
AuthorSharon Lohr
Book FormatPaperback
LanguageEnglish
Book SubtitleDesign And Analysis
Editorial Review1. INTRODUCTION. A Sample Controversy. Requirements of a Good Sample. Selection Bias. Measurement Error. Questionnaire Design. Sampling and Nonsampling Errors. Exercises. 2. SIMPLE PROBABILITY SAMPLES. Types of Probability Samples. Framework for Probability Sampling. Simple Random Sampling. Sampling Weights. Confidence Intervals. Sample Size Estimation. Systematic Sampling. Randomization Theory Results for Simple Random Sampling. A Prediction Approach for Simple Random Sampling. When Should a Simple Random Sample Be Used? Chapter Summary. Exercises. 3. STRATIFIED SAMPLING. What Is Stratified Sampling? Theory of Stratified Sampling. Sampling Weights in Stratified Random Sampling. Allocating Observations to Strata. Defining Strata. Model-Based Inference for Stratified Sampling. Quota Sampling. Chapter Summary. Exercises. 4. RATIO AND REGRESSION ESTIMATION. Ratio Estimation in a Simple Random Sample. Estimation in Domains. Regression Estimation in Simple Random Sampling. Poststratification. Ratio Estimation with Stratified Samples. Model-Based Theory for Ratio and Regression Estimation. Chapter Summary. Exercises. 5. CLUSTER SAMPLING WITH EQUAL PROBABILITIES. Notation for Cluster Sampling. One-Stage Cluster Sampling. Two-Stage Cluster Sampling. Designing a Cluster Sample. Systematic Sampling. Model-Based Inference in Cluster Sampling. Chapter Summary. Exercises. 6. SAMPLING WITH UNEQUAL PROBABILITIES. Sampling One Primary Sampling Unit. One-Stage Sampling with Replacement. Two-Stage Sampling with Replacement. Unequal Probability Sampling Without Replacement. Examples of Unequal Probability Samples. Randomization Theory Results and Proofs. Models and Unequal Probability Sampling. Chapter Summary. Exercises. 7. COMPLEX SURVEYS. Assembling Design Components. Sampling Weights. Estimating a Distribution Function. Plotting Data from a Complex Survey. Univariate Plots. Design Effects. The National Crime Victimization Survey. Sampling and Experiment Design. Chapter Summary. Exercises. 8. NONRESPONSE. Effects of Ignoring Nonresponse. Designing Surveys to Reduce Nonsampling Errors. Callbacks and Two-Phase Sampling. Mechanisms for Nonresponse. Weighting Methods for Nonresponse. Imputation. Parametric Models for Nonresponse. What Is an Acceptable Response Rate? Chapter Summary. Exercises. 9. VARIANCE ESTIMATION IN COMPLEX SURVEYS. Linearization (Taylor Series) Methods. Random Group Methods. Resampling and Replication Methods. Generalized Variance Functions. Confidence Intervals. Chapter Summary. Exercises. 10. CATEGORICAL DATA ANALYSIS IN COMPLEX SURVEYS. Chi-Square Tests with Multinomial Sampling. Effects of Survey Design on Chi-Square Tests. Corrections to x2 Tests. Loglinear Models. Chapter Summary. Exercises. 11. REGRESSION WITH COMPLEX SURVEY DATA. Model-Based Regression in Simple Random Samples. Regression in Complex Surveys. Should Weights Be Used in Regression? Mixed Models for Cluster Samples. Logistic Regression. Generalized Regression Estimation for Population Totals. Chapter Summary. Exercises. 12. TWO-PHASE SAMPLING. Theory for Two-Phase Sampling. Two-Phase Sampling with Stratification. Two-Phase Sampling with Ratio Estimation. Subsampling Nonrespondents. Designing a Two-Phase Sample. Chapter Summary. Exercises. 13. ESTIMATING POPULATION SIZE. Capture-Recapture Estimates. Contingency Tables for Capture-Recapture Experiments. Assessing Undercoverage. Chapter Summary. Exercises. 14. RARE POPULATIONS AND SMALL AREA ESTIMATIONS. Sampling for Rare Events. Small Area Estimation. Chapter Summary. Exercises. 15. SURVEY QUALITY. Nonresponse Error. Measurement Error. Sensitive Questions. Processing Error. Sampling Error. Interaction of Error Sources. The Future of Sampling. Chapter Summary. Exercises. APPENDICES: PROBABILITY CONCEPTS USED IN SAMPLING. Probability. Random Variables and Expected Value. Conditional Probability. Conditional Expectation. REFERENCES.
About the AuthorSharon Lohr (Ph.D. in statistics, University of Wisconsin-Madison) is the Thompson Industries Dean's Distinguished Professor of Statistics at Arizona State University, where she has taught since 1990. Dr. Lohr's research focuses on survey sampling, design of experiments, and applications of statistics to social sciences and education. She has published numerous articles in journals including The Annals of Statistics, Journal of the American Statistical Association, Journal of the Royal Statistical Society, Biometrika, Journal of Quantitative Criminology, Wisconsin Law Review, and The American Statistician. She has served as chair of the Survey Research Methods Section of the American Statistical Association, president of the Arizona Chapter of the American Statistical Association, Fellow of the American Statistical Association, Elected Member of the International Statistical Institute, and member of the Census Advisory Committee of Professional Associations and the Statistics Canada Advisory Board on Statistical Methodology. In 2003 she received the inaugural Gertrude M. Cox Award from the Washington Statistical Society and in 2009 was selected to present the Morris Hansen Lecture.
Edition Number2
Publication Date14 Jan 2010
Number of Pages608
placeholder
Added to cartatc
Cart Total EGP 560.60

We're Always Here To Help

Reach out to us through any of these support channels

Shop On The Go

App StoreGoogle PlayHuawei App Gallery

Connect With Us

mastercardvisavaluamexcod