عن المؤلف | Carrie A. Eckert, PhD., is a Senior Research Scientist with a joint appointment at the National Renewable Energy Laboratory (NREL) and the University of Colorado, Boulder, Renewable and Sustainable Energy Institute (RASEI), University of Colorado, Boulder, CO. Eckert received a B.S. in Biology from the University of South Dakota (1999) and a Ph.D. in Molecular Biology at the University of Colorado, Anschutz Campus under the supervision of Dr. Paul Megee where she studied chromosome segregation in Saccharomyces cerevisiae (2006). After a short Howard Hughes Medical Institute (HHMI) postdoctoral fellowship with Dr. James Maller studying cell cycle regulation in Xenopus laevis egg extracts (Pharmacology, University of Colorado, Anschutz campus), she began postdoctoral studies at the National Renewable Energy Laboratory in 2008 and became a staff scientist in 2011. Her work at NREL has involved the study of hydrogenases and metabolic engineering in diverse microbes including Synechocystis sp. PCC6803, Ralstonia eutropha H16, and Rubrivivax gelatinosus CBS. More recent work includes the metabolic engineering of bioethylene production in E. coli as a part of a collaborative project with the Gill lab, as well as a collaborative project with Kiverdi working on metabolic engineering of microbes for terpenoid production using Syngas as a feedstock. Cong T. Trinh, PhD., is a Professor of Chemical and Biomolecular Engineering at the University of Tennessee Knoxville (UTK). Trinh received his B.S. in Chemical Engineering (with summa cum laude, honors thesis) at the University of Houston and earned his Ph.D. in Chemical Engineering at the University of Minnesota, Twin Cities. To continue his interests in biofuels research, he has worked at the Energy Biosciences Institute, University of California, Berkeley as a postdoctoral scholar. At UTK, his research interests focus on understanding and engineering cellular metabolism with the ultimate goal to design, construct, and characterize cells with optimized metabolic functionalities. These engineered cells are utilized as efficient and robust whole-cell biocatalysts exhibiting only desirable properties specifically tailored for biotechnological applications related to energy, health, and environment. |