English
  • استرجاع مجاني وسهل
  • أفضل العروض

Data-Driven Reservoir Modeling

الآن:
1025.00 د.إ.‏شامل ضريبة القيمة المضافة
توصيل مجاني
noon-marketplace
احصل عليه خلال 19 - 22 فبراير
اطلب في غضون 18 ساعة 41 دقيقة
VIP ENBD Credit Card

emi
خطط الدفع الشهرية تبدأ من د.إ.‏86عرض المزيد من التفاصيل
VIP card

احصل على د.إ. 51.25 رصيد مسترجع باستخدام بطاقة بنك المشرق نون الائتمانية. اشترك الآن. قدّم الحين

التوصيل 
بواسطة نوون
التوصيل بواسطة نوون
البائع ذو
 تقييم عالي
البائع ذو تقييم عالي
الدفع 
عند الاستلام
الدفع عند الاستلام
عملية 
تحويل آمنة
عملية تحويل آمنة
1
1 تمت الإضافة لعربة التسوق
أضف للعربة
Noon Locker
توصيل مجاني لنقطة نون ومراكز الاستلام
معرفة المزيد
free_returns
إرجاع سهل لكل المنتجات في هذا العرض.
المنتج كما في الوصف
المنتج كما في الوصف
70%
شريك لنون منذ

شريك لنون منذ

7+ سنين
نظرة عامة
المواصفات
الناشرSociety of Petroleum Engineers
رقم الكتاب المعياري الدولي 139781613995600
رقم الكتاب المعياري الدولي 101613995601
الكاتبShahab D Mohaghegh
اللغةEnglish
وصف الكتابData-Driven Reservoir Modeling introduces new technology and protocols (intelligent systems) that teach the reader how to apply data analytics to solve real-world, reservoir engineering problems. The book describes how to utilize machine-learning-based algorithmic protocols to reduce large quantities of difficult-to-understand data down to actionable, tractable quantities. Through data manipulation via artificial intelligence, the user learns how to exploit imprecision and uncertainty to achieve tractable, robust, low-cost, effective, actionable solutions to challenges facing upstream technologists in the petroleum industry. Data-Driven Reservoir Modeling is intended to introduce a technology that is relatively new to petroleum engineers and geoscientists whose day-to-day job responsibilities always bring them to junctures where critical technical decisions need to be made and strategies need to be established. The technology covered in this book adds another decision-making tool to the arsenal of upstream technologists of the petroleum industry. This book should also be useful to petroleum engineering and geosciences undergraduate students in their junior or senior year, as well as to graduate studentswith some degree of exposure to the principles of petroleum engineering field operations, petroleum geology, and petroleum geophysics.The aim of this book is to present a methodology that is rather new to the petroleum engineering community and is particularly suited to the application of data analytics to physical problems of reservoir engineering for tracking the state of dynamics with the goal of strengthening the decision-making process. With the help of the pragmatic approach provided in this book, data-driven modeling can be effectively used in field planning and development studies.
عن المؤلفShahab D. Mohaghegh, a pioneer in the application of Artificial Intelligence and Data Mining in the Exploration and Production industry, is the president and CEO of Intelligent Solutions, Inc. (ISI) and professor of Petroleum and Natural Gas Engineering at West Virginia University. He holds BS, MS, and PhD degrees in petroleum and natural gas engineering. He has authored more than 170 technical papers and carried out more than 60 projects for NOCs and IOCs. He is a SPE Distinguished Lecturer and has been featured in the Distinguished Author Series of SPE's Journal of Petroleum Technology (JPT) four times. He is the founder of Petroleum Data-Driven Analytics, SPE's Technical Section dedicated to machine learning and data mining. He has been honored by the US Secretary of Energy for his technical contribution in the aftermath of the Deepwater Horizon (Macondo) incident in the Gulf of Mexico and was a member of US Secretary of Energy's Technical Advisory Committee on Unconventional Resources (2008-2014). He represented the United States in the International Standard Organization (ISO) on Carbon Capture and Storage (2014-2016).
تاريخ النشر15 October 2020
عدد الصفحات180 pages

Data-Driven Reservoir Modeling

تمت الإضافة لعربة التسوقatc
مجموع السلة 1025.00 د.إ.‏
Loading