English
  • استرجاع مجاني وسهل
  • أفضل العروض

Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists

الآن:
د.إ.‏ 268.00 شامل ضريبة القيمة المضافة
توصيل مجاني
باقي 1 وحدات في المخزون
توصيل مجاني
باقي 1 وحدات في المخزون
noon-express
احصل عليه غدًا
اطلب في غضون 11 ساعة 55 دقيقة
VIP ENBD Credit Card

emi
خطط الدفع الشهرية تبدأ من د.إ.‏23عرض المزيد من التفاصيل
VIP card

احصل على 5% رصيد مسترجع باستخدام بطاقة بنك المشرق نون الائتمانية. اشترك الآن. قدّم الحين

/enbd-offer
التوصيل 
بواسطة نوون
التوصيل بواسطة نوون
البائع ذو
 تقييم عالي
البائع ذو تقييم عالي
الدفع 
عند الاستلام
الدفع عند الاستلام
عملية 
تحويل آمنة
عملية تحويل آمنة
/welcome-new-user
1
1 تمت الإضافة لعربة التسوق
أضف للعربة
نظرة عامة
المواصفات
الناشرO'Reilly Media
رقم الكتاب المعياري الدولي 139781491953242
رقم الكتاب المعياري الدولي 101491953241
الكاتبAlice Zheng
تنسيق الكتابPaperback
اللغةEnglish
وصف الكتابFeature engineering is a crucial step in the machine-learning pipeline, yet this topic is rarely examined on its own. With this practical book, you’ll learn techniques for extracting and transforming features―the numeric representations of raw data―into formats for machine-learning models. Each chapter guides you through a single data problem, such as how to represent text or image data. Together, these examples illustrate the main principles of feature engineering. Rather than simply teach these principles, authors Alice Zheng and Amanda Casari focus on practical application with exercises throughout the book. The closing chapter brings everything together by tackling a real-world, structured dataset with several feature-engineering techniques. Python packages including numpy, Pandas, Scikit-learn, and Matplotlib are used in code examples. You’ll examine: Feature engineering for numeric data: filtering, binning, scaling, log transforms, and power transforms Natural text techniques: bag-of-words, n-grams, and phrase detection Frequency-based filtering and feature scaling for eliminating uninformative features Encoding techniques of categorical variables, including feature hashing and bin-counting Model-based feature engineering with principal component analysis The concept of model stacking, using k-means as a featurization technique Image feature extraction with manual and deep-learning techniques
عن المؤلفAlice is a technical leader in the field of Machine Learning. Her experience spans algorithm and platform development and applications. Currently, she is a Senior Manager in Amazon's Ad Platform. Previous roles include Director of Data Science at GraphLab/Dato/Turi, machine learning researcher at Microsoft Research, Redmond, and postdoctoral fellow at Carnegie Mellon University. She received a Ph.D. in Electrical Engineering and Computer science, and B.A. degrees in Computer Science in Mathematics, all from U.C. Berkeley.
تاريخ النشر10 April 2018
عدد الصفحات630 pages

Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists

تمت الإضافة لعربة التسوقatc
مجموع السلة 268.00 د.إ.‏
Loading