احصل على د.إ. 16.30 رصيد مسترجع باستخدام بطاقة بنك المشرق نون الائتمانية. اشترك الآن. قدّم الحين
شريك لنون منذ
7+ سنينالناشر | Oxford University Press |
رقم الكتاب المعياري الدولي 13 | 9780199676774 |
رقم الكتاب المعياري الدولي 10 | 0199676771 |
اللغة | الإنجليزية |
العنوان الفرعي للكتاب | Twistors, Loop Groups, And Riemann Surfaces |
وصف الكتاب | This textbook is designed to give graduate students an understanding of integrable systems via the study of Riemann surfaces, loop groups, and twistors. The book has its origins in a series of lecture courses given by the authors, all of whom are internationally known mathematicians and renowned expositors. It is written in an accessible and informal style, and fills a gap in the existing literature. The introduction by Nigel Hitchin addresses the meaning of integrability: how do we recognize an integrable system? His own contribution then develops connections with algebraic geometry, and includes an introduction to Riemann surfaces, sheaves, and line bundles. Graeme Segal takes the Kortewegde Vries and nonlinear Schroedinger equations as central examples, and explores the mathematical structures underlying the inverse scattering transform. He explains the roles of loop groups, the Grassmannian, and algebraic curves. In the final part of the book, Richard Ward explores the connection between integrability and the self-dual Yang-Mills equations, and describes the correspondence between solutions to integrable equations and holomorphic vector bundles over twistor space. |
عن المؤلف | Nigel Hitchin is Savilian Professor of Geometry at the University of Oxford Graeme Segal is Emeritus Fellow of All Souls College, University of Oxford Richard Ward is Professor in the Department of Mathematical Sciences, Durham University |
رقم الطبعة | 1st Edition |
تاريخ النشر | 1-Jun-2013 |
عدد الصفحات | 148 |
Integrable Systems paperback english - 1-Jun-2013