English
  • استرجاع مجاني وسهل
  • أفضل العروض

Methods For Partial Differential Equations: Qualitative Properties Of Solutions, Phase Space Analysis, Semilinear Models hardcover english - 28 Mar 2018

الآن:
492.00 د.إ.‏شامل ضريبة القيمة المضافة
noon-marketplace
احصل عليه خلال 14 يناير
اطلب في غضون 3 ساعة 59 دقيقة
VIP ENBD Credit Card

emi
خطط الدفع الشهرية تبدأ من د.إ.‏41عرض المزيد من التفاصيل
VIP card

احصل على د.إ. 24.60 رصيد مسترجع باستخدام بطاقة بنك المشرق نون الائتمانية. اشترك الآن. قدّم الحين

ادفع على 4 دفعات بدون فوائد بقيمة ١٢٣٫٠٠ د.إ.اعرف المزيد
قسمها على 4 دفعات ب ١٢٣٫٠٠ د.إ. بدون فوائد أو رسوم تأخير.اعرف المزيد
التوصيل 
بواسطة نوون
التوصيل بواسطة نوون
البائع ذو
 تقييم عالي
البائع ذو تقييم عالي
الدفع 
عند الاستلام
الدفع عند الاستلام
عملية 
تحويل آمنة
عملية تحويل آمنة
1
1 تمت الإضافة لعربة التسوق
أضف للعربة
Noon Locker
توصيل مجاني لنقطة نون ومراكز الاستلام
معرفة المزيد
free_returns
إرجاع سهل لكل المنتجات في هذا العرض.
المنتج كما في الوصف
المنتج كما في الوصف
70%
شريك لنون منذ

شريك لنون منذ

7+ سنين
نظرة عامة
المواصفات
الناشرBirkhauser Verlag AG
رقم الكتاب المعياري الدولي 139783319664552
اللغةالإنجليزية
العنوان الفرعي للكتابQualitative Properties of Solutions, Phase Space Analysis, Semilinear Models
وصف الكتابThis book provides an overview of different topics related to the theory of partial differential equations. Selected exercises are included at the end of each chapter to prepare readers for the "research project for beginners" proposed at the end of the book. It is a valuable resource for advanced graduates and undergraduate students who are interested in specializing in this area. The book is organized in five parts: In Part 1 the authors review the basics and the mathematical prerequisites, presenting two of the most fundamental results in the theory of partial differential equations: the Cauchy-Kovalevskaja theorem and Holmgren's uniqueness theorem in its classical and abstract form. It also introduces the method of characteristics in detail and applies this method to the study of Burger's equation. Part 2 focuses on qualitative properties of solutions to basic partial differential equations, explaining the usual properties of solutions to elliptic, parabolic and hyperbolic equations for the archetypes Laplace equation, heat equation and wave equation as well as the different features of each theory. It also discusses the notion of energy of solutions, a highly effective tool for the treatment of non-stationary or evolution models and shows how to define energies for different models. Part 3 demonstrates how phase space analysis and interpolation techniques are used to prove decay estimates for solutions on and away from the conjugate line. It also examines how terms of lower order (mass or dissipation) or additional regularity of the data may influence expected results. Part 4 addresses semilinear models with power type non-linearity of source and absorbing type in order to determine critical exponents: two well-known critical exponents, the Fujita exponent and the Strauss exponent come into play. Depending on concrete models these critical exponents divide the range of admissible powers in classes which make it possible to prove quite different qualitative properties of solutions, for example, the stability of the zero solution or blow-up behavior of local (in time) solutions. The last part features selected research projects and general background material.
المراجعة التحريريةThis book contains both a careful presentation of several important theoretic notions and properties but also a selection of well-chosen exercises at the end of each chapter. ... The exposition is flexible enough to allow substantial changes in the presentation of the arguments without compromising comprehension ... . this volume is a valuable resource for advanced undergraduate and graduate students ... . This book may also be useful for Ph.D. students or for special courses or seminars. (Vicentiu D. Radulescu, Mathematical Reviews, October, 2018)
عن المؤلفMarcelo Rempel Ebert (1977) is an Associate Professor at the Department of Computing and Mathematics at the University of Sao Paulo (USP). He obtained his Ph.D. degree in 2004 from Federal University of Sao Carlos, Brazil. His original contributions are mainly devoted to Evolution partial differential equations, in particular, questions related to the asymptotic behaviour and global existence of solutions for the Cauchy problem to semilinear wave equations. Michael Gerhard Reissig (1958) is Professor for Partial Differential Equations at the Institute of Applied Analysis of the Technical University Bergakademie Freiberg. He obtained the degree Dr.rer.nat. in 1987, Dr.sc. in 1991 and Dr.habil. in 1992. His main contributions are devoted to the abstract Cauchy-Kovalevskaja theory, to Hele-Shaw flows, to elliptic equations, hyperbolic equations and Schroedinger equations as well.
تاريخ النشر28 Mar 2018
عدد الصفحات456

Methods For Partial Differential Equations: Qualitative Properties Of Solutions, Phase Space Analysis, Semilinear Models hardcover english - 28 Mar 2018

تمت الإضافة لعربة التسوقatc
مجموع السلة 492.00 د.إ.‏
Loading