• usp_easy_retunsاسترجاع مجاني وسهل
  • usp_best_dealsأفضل العروض

التعلم التعزيزي: مقدمة

د.إ.‏427.00
د.إ.‏ 468.00 
شامل ضريبة القيمة المضافة
جاري الحفظ:
د.إ.‏ 41.00 
خصم 8%
nudge icon
توصيل مجاني
nudge icon
باقي 1 وحدات في المخزون
nudge icon
توصيل مجاني
noon-marketplace
احصل عليه خلال 29 مارس
اطلب في غضون 2 ساعة 57 دقيقة
VIP ENBD Credit Card

placeholder
/adcb-offer
placeholder
/crypto.com
التوصيل 
بواسطة نوون
التوصيل بواسطة نوون
الدفع 
عند الاستلام
الدفع عند الاستلام
عملية 
تحويل آمنة
عملية تحويل آمنة
نظرة عامة على المنتج
المواصفات
الناشرMit Press Ltd
رقم الكتاب المعياري الدولي 139780262039246
رقم الكتاب المعياري الدولي 10262039249
تنسيق الكتابغلاف صلب
اللغةالإنجليزية
Languageاللغة الإنجليزية
العنوان الفرعي للكتابAn Introduction
وصف الكتابThe significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.
عن المؤلفRichard S. Sutton is Professor of Computing Science and AITF Chair in Reinforcement Learning and Artificial Intelligence at the University of Alberta, and also Distinguished Research Scientist at DeepMind. Andrew G. Barto is Professor Emeritus in the College of Computer and Information Sciences at the University of Massachusetts Amherst.
رقم الطبعة2
تاريخ النشر43417
عدد الصفحات552
placeholder
تمت الإضافة لعربة التسوقatc
مجموع السلة 427.00 د.إ.‏

نحن دائماً جاهزون لمساعدتك

تواصل معنا من خلال أي من قنوات الدعم التالية:

تسوق أينما كنت

App StoreGoogle PlayHuawei App Gallery

تواصل معنا

mastercardvisatabbytamaraamexcod