English
  • استرجاع مجاني وسهل
  • أفضل العروض

Streaming Systems Paperback English by Tyler Akidau - 1 September 2018

الآن:
262.00 د.إ.‏شامل ضريبة القيمة المضافة
باقي 2 وحدات في المخزون
noon-marketplace
احصل عليه خلال 5 يناير
اطلب في غضون 10 ساعة 48 دقيقة
VIP ENBD Credit Card

emi
خطط الدفع الشهرية تبدأ من د.إ.‏22عرض المزيد من التفاصيل
VIP card

احصل على 5% رصيد مسترجع باستخدام بطاقة بنك المشرق نون الائتمانية. اشترك الآن. قدّم الحين

ادفع على 4 دفعات بدون فوائد بقيمة ٦٥٫٥٠ د.إ.اعرف المزيد
قسمها على 4 دفعات ب ٦٥٫٥٠ د.إ. بدون فوائد أو رسوم تأخير.اعرف المزيد
التوصيل 
بواسطة نوون
التوصيل بواسطة نوون
البائع ذو
 تقييم عالي
البائع ذو تقييم عالي
الدفع 
عند الاستلام
الدفع عند الاستلام
عملية 
تحويل آمنة
عملية تحويل آمنة
1
1 تمت الإضافة لعربة التسوق
أضف للعربة
Noon Locker
توصيل مجاني لنقطة نون ومراكز الاستلام
معرفة المزيد
free_returns
إرجاع سهل لكل المنتجات في هذا العرض.
المنتج كما في الوصف
المنتج كما في الوصف
70%
شريك لنون منذ

شريك لنون منذ

7+ سنين
نظرة عامة
المواصفات
الناشرO'Reilly Media, Inc, USA
رقم الكتاب المعياري الدولي 139781491983874
رقم الكتاب المعياري الدولي 101491983876
اللغةالإنجليزية
وصف الكتابStreaming data is a big deal in big data these days. As more and more businesses seek to tame the massive unbounded data sets that pervade our world, streaming systems have finally reached a level of maturity sufficient for mainstream adoption. With this practical guide, data engineers, data scientists, and developers will learn how to work with streaming data in a conceptual and platform-agnostic way. Expanded from Tyler Akidau's popular blog posts "Streaming 101" and "Streaming 102", this book takes you from an introductory level to a nuanced understanding of the what, where, when, and how of processing real-time data streams. You'll also dive deep into watermarks and exactly-once processing with co-authors Slava Chernyak and Reuven Lax. You'll explore: How streaming and batch data processing patterns compare The core principles and concepts behind robust out-of-order data processing How watermarks track progress and completeness in infinite datasets How exactly-once data processing techniques ensure correctness How the concepts of streams and tables form the foundations of both batch and streaming data processing The practical motivations behind a powerful persistent state mechanism, driven by a real-world example How time-varying relations provide a link between stream processing and the world of SQL and relational algebra
عن المؤلفTyler Akidau is a staff software engineer at Google Seattle. He leads technical infrastructure's internal data processing teams (MillWheel & Flume), is a founding member of the Apache Beam PMC, and has spent the last seven years working on massive-scale data processing systems. Though deeply passionate and vocal about the capabilities and importance of stream processing, he is also a firm believer in batch and streaming as two sides of the same coin, with the real endgame for data processing systems the seamless merging between the two. He is the author of the 2015 Dataflow Model paper and the Streaming 101 and Streaming 102 articles on the O'Reilly website. His preferred mode of transportation is by cargo bike, with his two young daughters in tow. Slava Chernyak is a senior software engineer at Google Seattle. Slava spent over five years working on Google's internal massive-scale streaming data processing systems and has since become involved with designing and building Windmill, Google Cloud Dataflow's next-generation streaming backend, from the ground up. Slava is passionate about making massive-scale stream processing available and useful to a broader audience. When he is not working on streaming systems, Slava is out enjoying the natural beauty of the Pacific Northwest. Reuven Lax is a senior staff software engineer at Google Seattle, and has spent the past nine years helping to shape Google's data processing and analysis strategy. For much of that time he has focused on Google's low-latency, streaming data processing efforts, first as a long-time member and lead of the MillWheel team, and more recently founding and leading the team responsible for Windmill, the next-generation stream processing engine powering Google Cloud Dataflow. He's very excited to bring Google's data-processing experience to the world at large, and proud to have been a part of publishing both the MillWheel paper in 2013 and the Dataflow Model paper in 2015. When not at work, Reuven enjoys swing dancing, rock climbing, and exploring new parts of the world.
تاريخ النشر1 September 2018
عدد الصفحات200

Streaming Systems Paperback English by Tyler Akidau - 1 September 2018

تمت الإضافة لعربة التسوقatc
مجموع السلة 262.00 د.إ.‏
Loading