العربية
  • Free & Easy Returns
  • Best Deals
العربية
loader
Wishlist
wishlist
Cart
cart

Advanced Analytics With Spark : Patterns For Learning From Data At Scale Paperback English by Uri Laserson - 6 July 2017

Now:
AED 197.00 Inclusive of VAT
noon-marketplace
Get it by 11 Jan
Order in 19 h 42 m
VIP ENBD Credit Card

VIP card

Earn 5% cashback with the Mashreq noon Credit Card. Apply now

Pay 4 interest-free payments of AED 49.25.Learn more
Split in 4 payments of AED 49.25. No interest. No late fees.Learn more
Delivery 
by noon
Delivery by noon
High Rated
Seller
High Rated Seller
Cash on 
Delivery
Cash on Delivery
Secure
Transaction
Secure Transaction
1
1 Added to cart
Add To Cart
Noon Locker
Free delivery on Lockers & Pickup Points
Learn more
free_returns
Enjoy hassle free returns with this offer.
Item as Described
Item as Described
70%
Partner Since

Partner Since

7+ Years
Overview
Specifications
PublisherO'Reilly Media, Inc, USA
ISBN 139781491972953
ISBN 101491972955
Book SubtitlePatterns For Learning From Data At Scale
Book DescriptionIn the second edition of this practical book, four Cloudera data scientists present a set of self-contained patterns for performing large-scale data analysis with Spark. The authors bring Spark, statistical methods, and real-world data sets together to teach you how to approach analytics problems by example. Updated for Spark 2.1, this edition acts as an introduction to these techniques and other best practices in Spark programming. You'll start with an introduction to Spark and its ecosystem, and then dive into patterns that apply common techniques-including classification, clustering, collaborative filtering, and anomaly detection-to fields such as genomics, security, and finance. If you have an entry-level understanding of machine learning and statistics, and you program in Java, Python, or Scala, you'll find the book's patterns useful for working on your own data applications. With this book, you will: Familiarize yourself with the Spark programming model Become comfortable within the Spark ecosystem Learn general approaches in data science Examine complete implementations that analyze large public data sets Discover which machine learning tools make sense for particular problems Acquire code that can be adapted to many uses
About the AuthorJuliet Hougland is the Head of Data Science, Engineering at Cloudera. Juliet holds an MS in Applied Mathematics from University of Colorado, Boulder and graduated Phi Beta Kappa from Reed College with a BA in Math-Physics. Uri Laserson is an Assistant Professor of Genetics at the Icahn School of Medicine at Mount Sinai, where he develops scalable technology for genomics and immunology using the Hadoop ecosystem. Sean Owen is Director of Data Science at Cloudera. He is an ApacheSpark committer and PMC member, and was an Apache Mahout committer. Sandy Ryza is a data science lead at Clover Health. Prior, he was a senior data scientist at Cloudera. He is an Apache Spark committer, Apache Hadoop PMC member, and founder of the Time Series for Spark project. He holds the Brown University computer science department's 2012 Twining award for "Most Chill." Josh Wills is the Head of Data Engineering at Slack, the founder of the Apache Crunch project, and wrote a tweet about data scientists once.
LanguageEnglish
AuthorUri Laserson, Sean Owens, Sandy Ryza, Josh Wills
Edition Number2
Publication Date6 July 2017
Number of Pages280

Advanced Analytics With Spark : Patterns For Learning From Data At Scale Paperback English by Uri Laserson - 6 July 2017

Added to cartatc
Cart Total AED 197.00
Loading