العربية
  • Free & Easy Returns
  • Best Deals
العربية
loader
Wishlist
wishlist
Cart
cart

Deep Learning with TensorFlow 2 and Keras

Now:
AED 236.00 Inclusive of VAT
Free Delivery
Only 1 left in stock
Free Delivery
Only 1 left in stock
noon-express
Get it by 26 Feb
Order in 16 h 0 m
VIP ENBD Credit Card

VIP card

Earn 5% cashback with the Mashreq noon Credit Card. Apply now

Delivery 
by noon
Delivery by noon
High Rated
Seller
High Rated Seller
Cash on 
Delivery
Cash on Delivery
Secure
Transaction
Secure Transaction
/welcome-new-user
1
1 Added to cart
Add To Cart
Overview
Specifications
PublisherPackt Publishing
ISBN 139781838823412
ISBN 101838823417
AuthorAntonio Gulli
Book FormatPaperback
LanguageEnglish
Book DescriptionBuild machine and deep learning systems with the newly released TensorFlow 2 and Keras for the lab, production, and mobile devicesKey FeaturesIntroduces and then uses TensorFlow 2 and Keras right from the startTeaches key machine and deep learning techniquesUnderstand the fundamentals of deep learning and machine learning through clear explanations and extensive code samplesBook DescriptionDeep Learning with TensorFlow 2 and Keras, Second Edition teaches neural networks and deep learning techniques alongside TensorFlow (TF) and Keras. You'll learn how to write deep learning applications in the most powerful, popular, and scalable machine learning stack available.TensorFlow is the machine learning library of choice for professional applications, while Keras offers a simple and powerful Python API for accessing TensorFlow. TensorFlow 2 provides full Keras integration, making advanced machine learning easier and more convenient than ever before.This book also introduces neural networks with TensorFlow, runs through the main applications (regression, ConvNets (CNNs), GANs, RNNs, NLP), covers two working example apps, and then dives into TF in production, TF mobile, and using TensorFlow with AutoML.What you will learnBuild machine learning and deep learning systems with TensorFlow 2 and the Keras APIUse Regression analysis, the most popular approach to machine learningUnderstand ConvNets (convolutional neural networks) and how they are essential for deep learning systems such as image classifiersUse GANs (generative adversarial networks) to create new data that fits with existing patternsDiscover RNNs (recurrent neural networks) that can process sequences of input intelligently, using one part of a sequence to correctly interpret anotherApply deep learning to natural human language and interpret natural language texts to produce an appropriate responseTrain your models on the cloud and put TF to work in real environmentsExplore how Google tools can automate simple ML workflows without the need for complex modelingWho this book is forThis book is for Python developers and data scientists who want to build machine learning and deep learning systems with TensorFlow. Whether or not you have done machine learning before, this book gives you the theory and practice required to use Keras, TensorFlow 2, and AutoML to build machine learning systems.
About the AuthorAntonio Gulli has a passion for establishing and managing global technological talent, for innovation and execution. His core expertise is in cloud computing, deep learning, and search engines. Currently, he serves as the Engineering Director for the Office of the CTO, Google Cloud. Previously, he served as Google Warsaw Site leader doubling the size of the engineering site.Amita Kapoor is an Associate Professor at the Department of Electronics, SRCASW, University of Delhi. She has been teaching neural networks for twenty years. During her PhD, she was awarded the prestigious DAAD fellowship, which enabled her to pursue part of her research work at the Karlsruhe Institute of Technology, Germany. She was awarded the Best Presentation Award at the International Conference on Photonics 2008. Being a member of the ACM, IEEE, INNS, and ISBS, she has published more than 40 papers in international journals and conferences. Her research areas include machine learning, AI, neural networks, robotics, and Buddhism and ethics in AI. She has co-authored the book, Tensorflow 1.x Deep Learning Cookbook, by Packt Publishing.Sujit Pal is a technology research director at Elsevier Labs, an advanced technology group within the Reed-Elsevier Group. His areas of interest include semantic search, natural language processing, machine learning, and deep learning. At Elsevier, he has worked on several initiatives involving search quality measurement and improvement, image classification and duplicate detection, and annotation and ontology development for medical and scientific corpora. In addition to co-authoring a book on deep learning with Antonio Gulli, Sujit writes about technology on his blog, Salmon Run.
Publication Date20 December 2019
Number of Pages646 pages

Deep Learning with TensorFlow 2 and Keras

Added to cartatc
Cart Total AED 236.00
Loading