Earn 5% cashback with the Mashreq noon Credit Card. Apply now
Publisher | CRC Press |
ISBN 13 | 9781032435763 |
ISBN 10 | 1032435763 |
Author | Ram Bilas Pachori |
Language | English |
Book Description | Most of the real-life signals are non-stationary in nature. The examples of such signals include biomedical signals, communication signals, speech, earthquake signals, vibration signals, etc. Time-frequency analysis plays an important role for extracting the meaningful information from these signals. The book presents time-frequency analysis methods together with their various applications. The basic concepts of signals and different ways of representing signals have been provided. The various time-frequency analysis techniques namely, short-time Fourier transform, wavelet transform, quadratic time-frequency transforms, advanced wavelet transforms, and adaptive time-frequency transforms have been explained. The fundamentals related to these methods are included. The various examples have been included in the book to explain the presented concepts effectively. The recently developed time-frequency analysis techniques such as, Fourier-Bessel series expansion-based methods, synchrosqueezed wavelet transform, tunable-Q wavelet transform, iterative eigenvalue decomposition of Hankel matrix, variational mode decomposition, Fourier decomposition method, etc. have been explained in the book. The numerous applications of time-frequency analysis techniques in various research areas have been demonstrated. This book covers basic concepts of signals, time-frequency analysis, and various conventional and advanced time-frequency analysis methods along with their applications. The set of problems included in the book will be helpful to gain an expertise in time-frequency analysis. The material presented in this book will be useful for students, academicians, and researchers to understand the fundamentals and applications related to time-frequency analysis. |
Publication Date | 19 December 2024 |
Number of Pages | 218 pages |
Time-Frequency Analysis Techniques and their Applications